ar X iv : q - a lg / 9 51 20 29 v 1 2 5 D ec 1 99 5 Ruijsenaars ’ commuting difference operators as commuting transfer matrices ∗

نویسنده

  • Koji HASEGAWA
چکیده

For Belavin's elliptic quantum R-matrix, we construct an L-operator as a set of difference operators acting on functions on the type A weight space. According to the fundamental relation RLL = LLR, the trace of the L-operator gives a commuting difference operators. We show that for the above mentioned L-operator this approach gives Macdonald type operators with elliptic theta function coefficient, actually equivalent to Ruijsenaars' operators. The relationship between the difference L-operator and Krichever's Lax matrix is given, and an explicit formula for elliptic commuting differential operators is derived. We also study the invariant subspace for the system which is spanned by symmetric theta functions on the weight space.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : q - a lg / 9 51 10 09 v 2 1 7 D ec 1 99 5 h - deformation of GL ( 1 | 1 )

h-deformation of (graded) Hopf algebra of functions on supergroup GL(1|1) is introduced via a contration of GL q (1|1). The deformation parameter h is odd (grassmann). Related differential calculus on h-superplane is presented.

متن کامل

ar X iv : q - a lg / 9 61 20 14 v 1 1 1 D ec 1 99 6 Integral soluitons of q - difference equations

Two integral solutions of q-difference equations of the hypergeometric type with |q| = 1 are constructed by using the double sine function. One is an integral of the Barnes type and the other is of the Euler type.

متن کامل

ar X iv : q - a lg / 9 51 10 02 v 1 2 N ov 1 99 5 Phase spaces related to standard classical r - matrices

Fundamental representations of real simple Poisson Lie groups are Poisson actions with a suitable choice of the Poisson structure on the underlying (real) vector space. We study these (mostly quadratic) Poisson structures and corresponding phase spaces (symplectic groupoids).

متن کامل

ar X iv : q - a lg / 9 60 10 10 v 1 1 1 Ja n 19 96 UAHEP 956 November 1995 TWO - PARAMETER DEFORMATION OF THE POINCARÉ ALGEBRA

We examine a two-parameter (, λ) deformation of the Poincarè algebra which is covariant under the action of SLq(2, C). When λ → 0 it yields the Poincarè algebra, while in the → 0 limit we recover the classical quadratic algebra discussed previously in [1], [2]. The analogues of the Pauli-Lubanski vector w and Casimirs p 2 and w 2 are found and a set of mutually commuting operators is constructed.

متن کامل

ar X iv : m at h / 02 05 33 5 v 1 [ m at h . Q A ] 3 1 M ay 2 00 2 Yang - Baxter maps and integrable dynamics

The hierarchy of commuting maps related to a set-theoretical solution of the quantum Yang-Baxter equation (Yang-Baxter map) is introduced. They can be considered as dynamical analogues of the monodromy and transfer-matrices. The general scheme of producing Yang-Baxter maps based on matrix factorisation is described. Some examples of birational Yang-Baxter maps appeared in the KdV theory are dis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995